Non-Deterministic Linkage Overview
Matching of Fields

…or, should we consider Zbignew and Zbigneu the same first name?

Phonetic Transformation
Textual Similarity/Distance Measures
Phonetic Transformations

- Recode string variables in a manner that makes it possible to identify similarly sounding words

- Carl and Karl won’t match in straight deterministic comparison, but phonetically they are identical

- Can be an effective tool for matching records that do not agree due to minor data entry errors arising from multiple variations of some words or names
Soundex

• Soundex
 – 4 character phonetic representations of fields
 – First letter is first character of Soundex code
 – Otherwise, ignores vowels
 – Straightforward rules

• Example
 – “Christine” and “Christina” are both C623
 – “Christopher” is also C623
 – But “Chris” is C620
Soundex and NYSIIS

• Fast, easy, well understood
• Widely available in most software
• NYSIIS
 – New York State Identification and Intelligence System
 – Modest improvement over Soundex
Soundex and NYSIIS

• Issues
 – Problems w/non-traditional, non-English
 • Ethnic variations of Soundex exist
 – Best when one can have many false positives (say records match when they don’t) OR false negatives (say records not match when they do)
 • Preferable in combination w/other tools, multiple iterations, or non-exact (probabilistic) techniques
Metaphone and Double Metaphone

• Metaphone
 – Reduces text to 16 consonants
 – Variable length
 – Address additional limitations of Soundex
 – More complex rules, but widely available
Metaphone and Double Metaphone

• Double Metaphone
 – Reduces text to 12 consonants
 – Returns two results for lang/ethnic variations
 – Very complex
 – Slower than Soundex/NYSIIS
Simple Relative Comparisons

• Allow for range of differences in original data
• Many approaches, including probabilistic
• Relative comparisons: If criteria are met, pairing is considered a match
 – Birthweight +/- 100g
 – Birthweight < 1500g
 – Approximate dates (“June 2008”, or +/- 1 day)
 – Note that this is different from moving window approach to blocking
Textual Similarities

• Leading Characters
 – Simplest approach
 – Do two strings agree on the first n characters
 – Can be a quick and efficient tool for long strings
 • Particularly if used with other strategies
 – Example based on first 5 leading characters
 • Johnson and Johnson match
 • Johnson and Johansen do not
Similarities Indices

• A variety of similarity indices reflecting how similar two strings are

• Not making the comparison of two strings a dichotomous “match” vs. “not match”

• Some numeric value that reflects the degree to which the two fields are similar
 – Ranging from completely unrelated to very similar to identical
 – Often scaled 0 (no similarity) to 1 (identical)
Edit Distance

• **Available in FRIL**

• A variety of similarity indices reflecting how similar two strings are

• **Edit Distance**
 – How many changes are required to make two strings identical
 – Johnson to Johansen
 • Johansen → Johnsen → Johnson
 • Edit distance of 2
 – If this sounds familiar…
Jaro Distance

• Jaro and others have proposed similarity indices based on string length, number of common characters, and transpositions

• Jaro Distance…

\[d_J = \frac{1}{3} \left[\frac{m}{|s_1|} + \frac{m}{|s_2|} + \frac{m - t}{m} \right] \]

…where m is the number of matches within a window of \(\frac{\max(|s_1|, |s_2|)}{2} - 1 \) characters of each other.
Jaro-Winkler Distance

- Jaro and Winkler Distance
 - Available in FRIL
 - Further modifies the Jaro Distance
 - Gives extra weight to agreement in the leading characters of a string

- l is the length of the leading string (max 4?)
- p is the additional weighting factor that one wants to give to this adjustments

\[d_{jw} = \max(1, d_j + lp(1 - d_j))\]
Dice Scores

<table>
<thead>
<tr>
<th>Birth Certificate</th>
<th>Medicaid Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>First</td>
</tr>
<tr>
<td>9</td>
<td>Zbignew</td>
</tr>
</tbody>
</table>

- Create bigrams for each string
- Birth certificate record
 - “br”, “re”, “ez”, “zi”, “in”, “ns”, “sk”, “ky”
- Medicaid enrollment record
 - “br”, “re”, “ez”, “zi”, “in”, “ns”, “sk”, “ki”
- Agree on 7 of the 8 bi-grams
Dice Scores

<table>
<thead>
<tr>
<th>Birth Certificate</th>
<th>Medicaid Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>First</td>
</tr>
<tr>
<td>9</td>
<td>Zbignew</td>
</tr>
</tbody>
</table>

- Agree on 7 of the 8 bi-grams

\[
\text{DiceCoef} = 2 \left[\frac{A_{\text{bigrams}} \cap B_{\text{bigrams}}}{A_{\text{bigrams}} + B_{\text{bigrams}}} \right]
\]

\[
\text{DiceCoef} = 2 \left[\frac{7}{8+8} \right] = .875
\]
Q-Grams in FRIL

• Dice Scores *with a twist*
• Includes a minimal level of agreement, below which the score is automatically “0”
• Includes a ceiling level of agreement, above which the score is automatically “1”
• Can include a linearly extrapolated score for levels of agreement that fall between these values
Numeric and Date Distance

- Accept as match values falling within a given range (as raw score or percentage) of each other

- Matches – without linear approximation
 - 0: Outside the range
 - 1: Any value within the range

- Matches – with linear approximation
 - 0: Outside the range
 - 1: A “true” exact match
 - A linear approximation between 0 and 1 proportion to how close the match is within the range
Summary of Similarity Indices

• Many of these can be relatively computationally demanding
 – Both in programming and tech resources
 – Similar to probabilistic computational demands?

• A variety of situations where valuable
 – A field is necessary but susceptible to typos
 – Adds depth to comparisons of individual fields beyond weights reflecting match/not match dichotomy
Non-Deterministic Matching of Records

…or, should we consider Zbignew Brezinski and Zbignew Brezinsky the same person?

Non-Deterministic Linkage Methodology
Weighted Matches
Probabilistic
Machine Learning
Non-Deterministic Methods

• Two records do not have to agree across all fields in order to be matched
• A record in one file is compared to multiple records in another file
• Various methods then employed to determine whether each comparison reflects a true match
Background

Consider linking two data sets

- A: Birth Certificates
- B: Medicaid Enrollments

\[
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_{n_A}
\end{bmatrix}
\quad
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
b_{n_B}
\end{bmatrix}
\]
Background

Record Set-A Record Set-B
Birth Certificates Enrollments

\[
\begin{bmatrix}
 a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_{n_A}
\end{bmatrix} \times \begin{bmatrix}
b_1 & b_2 & b_3 & \cdots & b_{n_B}
\end{bmatrix} \Rightarrow \begin{bmatrix}
a_1b_1 & a_1b_2 & a_1b_3 & \cdots & a_1b_{n_B} \\
a_2b_1 & a_2b_2 & a_2b_3 & \cdots & a_2b_{n_B} \\
a_3b_1 & a_3b_2 & a_3b_3 & \cdots & a_3b_{n_B} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n_A}b_1 & a_{n_A}b_2 & a_{n_A}b_3 & \cdots & a_{n_A}b_{n_B}
\end{bmatrix}
\]

• Many possible matches
Background

Record Set-A Record Set-B
Birth Certificates Enrollments

\[
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_{n_A}
\end{bmatrix} \times \begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
b_{n_B}
\end{bmatrix} \Rightarrow \begin{bmatrix}
a_1b_1 & a_1b_2 & a_1b_3 & \cdots & a_1b_{n_B} \\
a_2b_1 & a_2b_2 & a_2b_3 & \cdots & a_2b_{n_B} \\
a_3b_1 & a_3b_2 & a_3b_3 & \cdots & a_3b_{n_B} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n_A}b_1 & a_{n_A}b_2 & a_{n_A}b_3 & \cdots & a_{n_A}b_{n_B}
\end{bmatrix}
\]

• The truth is out there…
General Principles

<table>
<thead>
<tr>
<th>Possible Matches</th>
<th>Set M: “True” Correct Matches</th>
<th>Set U: “True” Incorrect Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix of Possible Matches from previous slide, described below.</td>
<td>a₁b₃</td>
<td>a₁b₁, a₂b₂, ..., a₃b₁, a₂b₂, a₂b₃, a₃b₂, a₃b₃, ⋮</td>
</tr>
<tr>
<td></td>
<td>a₂bₙₜ</td>
<td>a₁b₁, a₂b₂, a₂b₃, a₃b₂, a₃b₃, ⋮</td>
</tr>
<tr>
<td></td>
<td>aₙₐb₂</td>
<td>a₁b₁, a₂b₂, a₂b₃, a₃b₂, a₃b₃, ⋮</td>
</tr>
</tbody>
</table>

Matrix of Possible Matches:

\[
\begin{bmatrix}
 a₁b₁ & a₁b₂ & a₁b₃ & \cdots & a₁bₙₜ \\
 a₂b₁ & a₂b₂ & a₂b₃ & \cdots & a₂bₙₜ \\
 a₃b₁ & a₃b₂ & a₃b₃ & \cdots & a₃bₙₜ \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 aₙₐb₁ & aₙₐb₂ & aₙₐb₃ & \cdots & aₙₐbₙₜ \\
\end{bmatrix}
\]
Estimating M and U

<table>
<thead>
<tr>
<th>Predicted Matches</th>
<th>Set M: “True” Correct Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1b_3), (a_2b_nB), (a_3b_3), ...</td>
<td>(a_1b_3)
 (a_2b_nB)
 (a_3b_1)
 ...
 (a_nA) (b_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted Non-Matches</th>
<th>Set U: “True” Incorrect Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1b_1), (a_1b_2), (a_2b_1), (a_3b_1), (a_2b_3), (a_3b_2), ...</td>
<td>(a_1b_1),
 (a_1b_2), ...
 (a_1b_1), (a_2b_2), (a_2b_3), (a_3b_2), (a_3b_3),
 ... (a_nA) (b_nB)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uncertain Matches</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_2b_2), (a_nA) (b_2), ...</td>
<td>?</td>
</tr>
</tbody>
</table>
False Matches

Predicted Matches

| $a_1 b_3$, $a_2 b_{nB}$, $a_3 b_3$, ... |

Set M: “True” Correct Matches

| $a_1 b_3$, $a_2 b_{nB}$, $a_3 b_1$, $a_4 b_2$, ... |

Predicted Non-Matches

| $a_1 b_1$, $a_1 b_2$, $a_2 b_1$, $a_3 b_1$, $a_2 b_3$, $a_3 b_2$, ... |

Set U: “True” Incorrect Matches

| $a_1 b_1$, $a_1 b_2$, ..., $a_1 b_{nB}$, $a_2 b_2$, $a_2 b_3$, $a_3 b_2$, $a_3 b_3$, ... $a_{nA} b_{nB}$, |

Uncertain Matches

| $a_2 b_2$, $a_{nA} b_2$, ... |
False Non-Matches

<table>
<thead>
<tr>
<th>Predicted Matches</th>
<th>→</th>
<th>Set M: “True” Correct Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1 b_3, a_2 b_{n_B}, a_3 b_3, \ldots)</td>
<td></td>
<td>(a_1 b_3, a_2 b_{n_B}, a_3 b_1, \ldots, a_{n_A} b_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted Non-Matches</th>
<th>→</th>
<th>Set U: “True” Incorrect Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1 b_1, a_1 b_2, a_2 b_1, a_3 b_1, a_2 b_3, a_3 b_2, \ldots)</td>
<td></td>
<td>(a_1 b_1, a_1 b_2, \ldots, a_1 b_2, a_2 b_2, a_2 b_3, a_3 b_2, a_3 b_3, \ldots, a_{n_A} b_{n_B},)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uncertain Matches</th>
<th>→</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_2 b_2, a_{n_A} b_2, \ldots)</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
For a given level of false matches and non-matches, how do you obtain the smallest number of uncertain matches?

| Uncertain Matches | $a_2 b_2, a_n \overline{A} b_2, \ldots$ | \rightarrow | ? |
Optimization Problem

• For a given level of false matches and non-matches, how do you obtain the smallest number of uncertain matches?

• In practice…
 – Minimize the false matches
 – Minimize the false nonmatches
 – Minimize the uncertain matches

• May not be possible to do all at the same time
Correct Solution...

Record Set-A Record Set-B
Birth Certificates Enrollments

\[
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_{n_A}
\end{bmatrix}
\times
\begin{bmatrix}
 b_1 & b_2 & b_3 & \cdots & b_{n_B}
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 a_1 b_1 & a_1 b_2 & a_1 b_3 & \cdots & a_1 b_{n_B} \\
 a_2 b_1 & a_2 b_2 & a_2 b_3 & \cdots & a_2 b_{n_B} \\
 a_3 b_1 & a_3 b_2 & a_3 b_3 & \cdots & a_3 b_{n_B} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n_A} b_1 & a_{n_A} b_2 & a_{n_A} b_3 & \cdots & a_{n_A} b_{n_B}
\end{bmatrix}
\]

- But life is rarely perfect...
Solution Challenges

Record Set-A
Birth Certificates

Record Set-B
Enrollments

\[
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_{n_A}
\end{bmatrix}
\times
\begin{bmatrix}
 b_1 & b_2 & b_3 & \cdots & b_{n_B}
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 a_1 b_1 & a_1 b_2 & a_1 b_3 & \cdots & a_1 b_{n_B} \\
 a_2 b_1 & a_2 b_2 & a_2 b_3 & \cdots & a_2 b_{n_B} \\
 a_3 b_1 & a_3 b_2 & a_3 b_3 & \cdots & a_3 b_{n_B} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n_A} b_1 & a_{n_A} b_2 & a_{n_A} b_3 & \cdots & a_{n_A} b_{n_B}
\end{bmatrix}
\]

• One mistake and the dominoes begin to fall…
Solution Challenges

Record Set-A Record Set-B
Birth Certificates Enrollments

$$\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_{n_A}
\end{bmatrix} \times \begin{bmatrix}
 b_1 & b_2 & b_3 & \cdots & b_{n_B}
\end{bmatrix} \Rightarrow$$

Possible Matches

$$\begin{bmatrix}
 a_1 b_1 & a_1 b_2 & a_1 b_3 & \cdots & a_1 b_{n_B} \\
 a_2 b_1 & a_2 b_2 & a_2 b_3 & \cdots & a_2 b_{n_B} \\
 a_3 b_1 & a_3 b_2 & a_3 b_3 & \cdots & a_3 b_{n_B} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n_A} b_1 & a_{n_A} b_2 & a_{n_A} b_3 & \cdots & a_{n_A} b_{n_B}
\end{bmatrix}$$
Solution Challenges

Record Set-A Record Set-B
Birth Certificates Enrollments

\[
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_{n_A}
\end{bmatrix} \times \begin{bmatrix}
 b_1 & b_2 & b_3 & \cdots & b_{n_B}
\end{bmatrix} \implies
\]

Possible Matches

\[
\begin{bmatrix}
 a_1 b_1 & a_1 b_2 & a_1 b_3 & \cdots & a_1 b_{n_B} \\
 a_2 b_1 & a_2 b_2 & a_2 b_3 & \cdots & a_2 b_{n_B} \\
 a_3 b_1 & a_3 b_2 & a_3 b_3 & \cdots & a_3 b_{n_B} \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 a_{n_A} b_1 & a_{n_A} b_2 & a_{n_A} b_3 & \cdots & a_{n_A} b_{n_B}
\end{bmatrix}
\]
Estimating M and U

<table>
<thead>
<tr>
<th>Predicted Matches</th>
<th>→</th>
<th>Set M: “True” Correct Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1 b_3, a_2 b_\text{nB}, a_3 b_3, \ldots)</td>
<td></td>
<td>(a_1 b_3, a_2 b_\text{nB}, a_3 b_1, \ldots, a_n A b_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted Non-Matches</th>
<th>→</th>
<th>Set U: “True” Incorrect Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1 b_1, a_1 b_2, a_2 b_1, a_3 b_1, a_2 b_3, a_3 b_2, \ldots)</td>
<td></td>
<td>(a_1 b_1, a_1 b_2, \ldots, a_1 b_1, a_2 b_2, a_2 b_3, a_3 b_2, a_3 b_3, \ldots, a_n A b_2, a_n A b_2, a_n A b_{\text{nB}}, \ldots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uncertain Matches</th>
<th>→</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_2 b_2, a_n A b_2, \ldots)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Start by throwing the majority of possible matches into predicted non-matches through blocking
Blocking Techniques

• Typically begin by essentially eliminating the vast majority of possible matches
 – Automatically code as non-matches

• All-to-All Comparison
 – Every record in A compared to every record in B
 – Generally only practical in smaller databases
Blocking

- Possible matches must agree on a subset of specified fields
- Possible matches not agreeing on those fields automatically classified as non-matches
- Can dramatically reduce the number of possible comparisons to make
- Generally some form of blocking is necessary for computational efficiency
Blocking

- Selection of fields used for blocking is key
- The poorer the quality of the fields used in blocking, the more erratic the results
 - If data in blocking fields are random, results are meaningless
 - If data in blocking fields are “perfect”, results will still contain all correct matches
 - Quantify the upfront minimum/base error rate as the product of the corresponding m probabilities (more later..)
Moving Window Blocking

• Records are sorted based on some combination of one or more fields

• Records in A are compared to similar records in B that fall within a specified window size
 – Sort by date of birth
 – Select window size of 30
 – If a baby in A was born on August 18, 2007 only consider the 30 records in B around that value
Moving Window Blocking

• Selection of fields for sorting is again key
 – Sorting on different fields may increase the separation of “correct” matches
 – Typos may dramatically impact windows

• Multiple iterations with different sort orders may be valuable

• Powerful tool when one wants to block on quantitative field with expected small errors (dates, birth weight…)
Comparison of Blocking Approaches

• If great confidence in a given field, traditional blocking may make the most sense
• If one wishes to use a quantitative variable (birthweight, date of birth) for blocking, moving window comparison probably makes the most sense
• Note that this is different than a distance measure for an individual field (e.g., a birth within 100g is considered a match)
Non-Deterministic Methods

Weighted matches
Probabilistic methods
Machine learning
Hold on Tight for a Minute…

• Winnie the Pooh Video
Non-Deterministic Methods

• Two records do not have to agree across all fields in order to be matched
 – Weights are used to quantify the likelihood that a pair of records are a true match

• A record in one file is compared to multiple records in another file
 – Using the weights, scores are calculated for possible matches that suggest whether it is correct (i.e., are the same person)
Cutoff Scores

• Cutoff scores
 – Above some value (e.g. “14”) conclude it is a true match
 – Below some value (“11”), conclude it is not a true match
 – Any possible match with a score between these two values is a manually reviewed

• Individual choice in cutting off low weights
Weighted Fields

• Match two data files based on SSN, First Name, Last Name, Date of Birth, …

• Agreement in some fields are given more “weight” than agreement in other fields
 – A match on SSN has a weight of 3
 – A match on First Name has a weight of 1
 – A match on Last Name has a weight of 2

• The weight is non-specific (i.e., does not change based on the values in the field)
Weighted Fields

• Sum the weights for each possible match
 – Agreement in different fields results in different sums
 – Larger sums reflect greater confidence of a match
 – Distribution evaluated and cutoff scores determined
 – Each possible match is compared to these cutoff scores to conclude whether a match, non-match, or review
Weighted Fields

• Determining values for the weights
 – Different fields may be a stronger indicator of a true match (ID number versus name)
 – Can assign “penalty” weights for non-matches
 • High quality field that *should* almost always agree
 – Subjective, EM algorithm, machine learning
• With *non-specific weights*, the same weight applies for regardless of the actual data values being matched
 • “Jones-Jones” gets the same weight as “Szapocznik-Szapocznik”
Probabilistic Matching

- In contrast, probabilistic matching takes into consideration the specific values in the fields being matched
 - Considers the quality of the data in the field
 - Open to further analysis of matching strength

<table>
<thead>
<tr>
<th>Birth Certificate</th>
<th>Enrollment Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>First</td>
</tr>
<tr>
<td>9</td>
<td>Zbignew</td>
</tr>
</tbody>
</table>
Probabilistic Matching

- More complicated (and expensive) strategy
- Still need to estimate some weights (m and u probs)

<table>
<thead>
<tr>
<th>Birth Certificates</th>
<th>Birth Defects Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>First</td>
</tr>
<tr>
<td>9</td>
<td>Zbignew</td>
</tr>
</tbody>
</table>

50
Probabilistic Matching

<table>
<thead>
<tr>
<th>Birth Certificate</th>
<th>Enrollment Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>First</td>
</tr>
<tr>
<td>9</td>
<td>Zbignew</td>
</tr>
</tbody>
</table>

- Two records are compared on each of the specified fields.
- A weight—w_i—is calculated for each field in a potential match reflecting the strength of the agreement or disagreement.
Factors Influencing Likelihood of Match

• Reliability of data fields
 – Good quality data counts more than poor quality
 • High quality data suggests that fields should agree if a correct match
 • Low quality data suggests that even if fields don’t agree, it may still be a correct match
 – If a field is pure noise, correct matches will be random across the databases
 – Reflects the likelihood that fields would agree if it is a correct link
Factors Influencing Likelihood of Match

• Frequency of field values
 – The more common the value in a field, the greater the odds that records will be erroneously matched
 • A match based on the Zbignew is a good indicator of a match, even if there may be disagreement in other fields
 • A match based on the John is of less value, requiring matches on more fields to conclude its the same person
 • Rare values count more than common values
 – Reflects the likelihood that fields would agree if not a correct link
Factors Influencing Likelihood of Match

- Number of Matches
 - The greater the number of individuals in one database that also appear in the other database, the greater probability of linkage across databases.
 - If two databases are the same size, and every record in one has a match in the other, it is easier to infer that two records are the same individual.
 - If two databases have **no** individuals in common, the probability of a linkage across the databases is nil, regardless of how well two records agree.
Calculating Match Weights

<table>
<thead>
<tr>
<th>Birth Certificate</th>
<th>Enrollment Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>First</td>
</tr>
<tr>
<td>9</td>
<td>Zbignew</td>
</tr>
</tbody>
</table>

- **Weight Calculation**
 - **M-probability**
 - Probability that a field agrees if the pair is a correct match
 - **U-probability**
 - Prob that a field agrees if the pair is an incorrect match
 - Chance that a given field will agree randomly
 - \approx the proportion of records with a specific value
Probabilistic Matching

- If the field agrees, \(w_i \) is equal to

\[
w_i = \log_2 \left(\frac{m_i}{u_i} \right)
\]
Probabilistic Matching

<table>
<thead>
<tr>
<th>Birth Certificate</th>
<th>Enrollment Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>First</td>
</tr>
<tr>
<td>9</td>
<td>Zbignew</td>
</tr>
</tbody>
</table>

- \(m_i \) for first name = .98, or 98% of the time, if it’s a correct match, the first names will agree
- \(u_i \) for Zbignew is .00001 is the probability of randomly getting two first names that are Zbignew

\[
w_{il} = \log_2 \left(\frac{m_i}{u_i} \right) = \log_2 \left(\frac{.98}{.00001} \right) = 16.58049
\]
Probabilistic Matching

- In cases where two records disagree on a specified field, \(w_i \) is equal to ….

\[
 w_i = \log_2 \left(1 - \frac{m_i}{1 - u_i} \right)
\]
Probabilistic Matching

- m_i for last name = .96, or 96% of the time, if it’s a correct match, the last names will agree.

- u_i for Brezinsky is .00003 is the probability of randomly getting two last names that are Brezinsky.

$$w_{i2} = \log_2 (\frac{(1 - m_i)}{(1 - u_i)}) = \log_2 (\frac{(1 - .96)}{(1 - .00003)}) = -4.64381$$
Calculating Match Weights

• A composite weight, w_t calculated for each pair of records
 - The sum of weights across all fields used in linkage

$$w_t = \sum_{i=1}^{k} w_i$$

$$w_{it} = 16.58049 - 4.64381 = 11.93668$$

• Larger w_t suggest a correct match,
• Smaller or negative w_t suggest an incorrect match.
Probabilistic Matching

• Two fields disagree
 – m-probabilities generally come into play
 – How big of a hit do you take when last name doesn't agree across a possible match?

• Two fields agree
 – Differences in the u-probabilities that typically matter most
 – (e.g., last name of Smith versus Brezinski).
Probabilistic Match Weights

• Cutoff values for w_t are determined and used to classify possible matches
 – Automatic matches
 – Manual review
 – Automatic rejection

• Traditionally, techniques end at this point
Probabilistic Match Weights

• Issues
 – w_t values have no inherent meaning
 • No set range as to large or small w_ts
 – If multiple iterations are performed, cutoffs must be analyzed and determined for every iteration
Estimating Probabilities

- The total-weight required for two records to have a probability, p, of being a match is equal to...

$$ w_t = \log_2(p/(1 - p)) - \log_2 (E/(N_1N_2 - E)) $$

...and...

$$ \log_2 (E/(N_1N_2 - E)) $$ is the base 2 log of the odds of a random match
Estimating Probabilities

From this formula, it is possible to derive an equation for estimating p, the probability that any two records are a match, where...

$$p = \frac{\prod_{i=0}^{K} x_i}{\prod_{i=0}^{K} x_i + 1}$$

$x_0 = E/(N_1N_2 - E)$ odds of a random match,

$x_{i,i>0} = m_i/u_i$ if two fields agree, and...

$x_{i,i>0} = (1 - m_i)/(1 - u_i)$ if two fields do not agree
Sum of Weights (w_t) vs Probabilities

- **Sum of Weights (w_t)**
 - Requires repeatedly calculating \log_2’s
 - No inherent interpretability, must subjectively determine a “large” w_t with each linkage

- **Probabilities**
 - Does not requires \log_2’s, and so improved speed with large linkage projects
 - More readily understood and interpreted criteria for determining whether to classify two records as being a match
Machine Learning

• Through a series of software-driven iterations, software “learns” which weights to use or which combinations of linkage fields are best

• May use any of these approaches
 – Most likely use weighted fields or probabilistic
Machine Learning

• Typically, use training datasets
 – Software fed training data with known solution regarding “true” matches
 – Algorithms match records based on initial sets of weights
 – Results compared to information regarding “true” matches to see if replicated
 – Modifies weights and re-runs with same or different training data
Machine Learning

• After various trials with training data, final set of weights determined
 – May see minimal modifications made to new trials
• Algorithm should now work with real data
• Issues
 – Identifying a training data set that reflects the nature, qualities, and issues in the data sets you wish to link
 – Complexity
 – Some approaches seek to skip need for training sets
Probabilistic Linkage Methods

• Some SAS programmers write their own code for probabilistic matching

• Software packages
 – Can be very expensive
 – Difficult to use
 – Some applications are available as freeware or shareware
Choosing Probabilistic Software

<table>
<thead>
<tr>
<th>Program</th>
<th>OS</th>
<th>Initial $</th>
<th>Yearly $</th>
<th>Link Type</th>
<th>Desc</th>
<th>Audience</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatch</td>
<td>Windows</td>
<td>$100,000</td>
<td>???</td>
<td>Probabilistic</td>
<td>GUI</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Generalized Record Linkage System (GRLS)</td>
<td>UNIX</td>
<td>$18,800</td>
<td>10%</td>
<td>Probabilistic</td>
<td>ORACLE</td>
<td>Health care</td>
<td>Stats Canada</td>
</tr>
<tr>
<td>LinkPro</td>
<td>Windows/Server</td>
<td>$1,455 / $1,190</td>
<td>None</td>
<td>Determ & Prob</td>
<td>SAS</td>
<td>Health care</td>
<td>U. of Manitoba</td>
</tr>
</tbody>
</table>

- **Links**: same as LinkPro but freeware
- **FRIL**: also freeware, open source
Overall Summary of Linkage Methods

• Many tools and strategies available
• No single approach is perfect for every situation
• Factors to consider
 – Purpose of linkage
 – Nature of the data
 • Quality of fields used for linkage
 • Type of data (string, date, numeric) used for linkage
 • Resources available