

1

Non-Deterministic Linkage Overview

Russell S. Kirby and Craig A. Mason CDC / CMS Training February 2014

Matching of Fields

...or, should we consider Zbignew and Zbigneu the same first name?

Phonetic Transformation Textual Similarity/Distance Measures

Phonetic Transformations

- Recode string variables in a manner that makes it possible to identify similarly sounding words
- Carl and Karl won't match in straight deterministic comparison, but phonetically they are identical
- Can be an effective tool for matching records that do not agree due to minor data entry errors arising from multiple variations of some words or names

Soundex

- Soundex
 - 4 character phonetic representations of fields
 - First letter is first character of Soundex code
 - Otherwise, ignores vowels
 - Straightforward rules
- Example
 - "Christine" and "Christina" are both C623
 - "Christopher" is also C623
 - But "Chris" is C620

Soundex and NYSIIS

- Fast, easy, well understood
- Widely available in most software
- NYSIIS
 - New York State Identification and Intelligence System
 - Modest improvement over Soundex

Soundex and NYSIIS

- Issues
 - Problems w/non-traditional, non-English
 - Ethnic variations of Soundex exist
 - Best when one can have many false positives (say records match when they don't) OR false negatives (say records not match when they do)
 - Preferable in combination w/other tools, multiple iterations, or non-exact (probabilistic) techniques

Metaphone and Double Metaphone

- Metaphone
 - Reduces text to 16 consonants
 - Variable length
 - Address additional limitations of Soundex
 - More complex rules, but widely available

Metaphone and Double Metaphone

- Double Metaphone
 - Reduces text to 12 consonants
 - Returns two results for lang/ethnic variations
 - Very complex
 - Slower than Soundex/NYSIIS

Simple Relative Comparisons

- Allow for *range* of differences in original data
- Many approaches, including probabilistic
- **Relative comparisons**: If criteria are met, pairing is considered a match
 - Birthweight +/- 100g
 - Birthweight < 1500g
 - Approximate dates ("June 2008", or +/- 1 day)
 - Note that this is different from moving window approach to blocking

Textual Similarities

- Leading Characters
 - Simplest approach
 - Do two strings agree on the first n characters
 - Can be a quick and efficient tool for long strings
 - Particularly if used with other strategies
 - Example based on first 5 leading characters
 - Johnson and Johnsen match
 - Johnson and Johansen do not

Similarities Indices

- A variety of similarity indices reflecting how *similar* two strings are
- Not making the comparison of two strings a dichotomous "match" vs. "not match"
- Some numeric value that reflects the degree to which the two fields are similar
 - Ranging from completely unrelated to very similar to identical
 - Often scaled 0 (no similarity) to 1 (identical)

Edit Distance

- Available in FRIL
- A variety of similarity indices reflecting how similar two strings are
- Edit Distance
 - How many changes are required to make two strings identical
 - Johnson to Johansen
 - Johansen \rightarrow Johnsen \rightarrow Johnson
 - Edit distance of 2
 - If this sounds familiar...

Jaro Distance

- Jaro and others have proposed similarity indices based on string length, number of common characters, and transpositions
- Jaro Distance...

$$d_{J} = \frac{1}{3} \left[\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right]$$

...where m is the number of matches within a window of $\frac{\max(|s_1|, |s_2|)}{2} - 1$ characters of each other

Jaro-Winkler Distance

- Jaro and Winkler Distance
 - Available in FRIL
 - Further modifies the Jaro Distance
 - Gives extra weight to agreement in the leading characters of a string
 - *l* is the length of the leading string (max 4?)
 - *p* is the additional weighting factor that one wants to give to this adjustments

•
$$d_{jw} = \max(1, d_j + lp(1 - d_j))$$

Russell S. Kirby and Craig A. Mason CDC / CMS Training February 2014

Dice Scores

Birth Certificate			Medicaid Enrollment				
ID	First	Mid	Last	ID	First	Mid	Last
9	Zbignew		Brezinsky	534	Zbignew	J	Brezinski

- Create bigrams for each string
- Birth certificate record

 "br", "re", "ez", "zi", "in", "ns", "sk", "ky"
- Medicaid enrollment record

 "br", "re", "ez", "zi", "in", "ns", "sk", "ki"
- Agree on 7 of the 8 bi-grams

Dice Scores

Birth Certificate			Medicaid Enrollment				
ID	First	Mid	Last	ID	First	Mid	Last
9	Zbignew		Brezinsky	534	Zbignew	J	Brezinski

• Agree on 7 of the 8 bi-grams

DiceCoef =
$$2\left[\frac{A_{bigrams} \cap B_{bigrams}}{A_{bigrams} + B_{bigrams}}\right]$$

DiceCoef = $2\left[\frac{7}{8+8}\right]$ = .875

Q-Grams in FRIL

- Dice Scores with a twist
- Includes a minimal level of agreement, below which the score is automatically "0"
- Includes a ceiling level of agreement, above which the score is automatically "1"
- Can include a linearly extrapolated score for levels of agreement that fall between these values

Numeric and Date Distance

- Accept as match values falling within a given range (as raw score or percentage) of each other
- Matches without linear approximation

- 0: Outside the range

- 1: Any value within the range
- Matches with linear approximation
 - 0: Outside the range
 - 1: A "true" exact match
 - A linear approximation between 0 and 1 proportion to how close the match is within the range

Summary of Similarity Indices

- Many of these can be relatively computationally demanding
 - Both in programming and tech resources
 - Similar to probabilistic computational demands?
- A variety of situations where valuable
 - A field is necessary but susceptible to typos
 - Adds depth to comparisons of individual fields beyond weights reflecting match/not match dichotomy

Non-Deterministic Matching of Records

...or, should we consider Zbignew Brezinski and Zbignew Brezinsky the same person?

Non-Deterministic Linkage Methodology Weighted Matches Probabilistic Machine Learning

Non-Deterministic Methods

- Two records do not have to agree across all fields in order to be matched
- A record in one file is compared to multiple records in another file
- Various methods then employed to determine whether each comparison reflects a true match

Background

Record Set-A Birth Certificates Record Set-B Enrollments

- Consider linking two data sets
 - A: Birth Certificates
 - B: Medicaid Enrollments

Background

Record Set-A Record Set-B Birth Certificates Enrollments

Possible Matches

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n_{A}} \end{bmatrix} \times \begin{bmatrix} b_{1} & b_{2} & b_{3} & \cdots & b_{n_{B}} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & a_{1}b_{3} & \cdots & a_{1}b_{n_{B}} \\ a_{2}b_{1} & a_{2}b_{2} & a_{2}b_{3} & \cdots & a_{2}b_{n_{B}} \\ a_{3}b_{1} & a_{3}b_{2} & a_{3}b_{3} & \cdots & a_{3}b_{n_{B}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n_{A}}b_{1} & a_{n_{A}}b_{2} & a_{n_{A}}b_{3} & \cdots & a_{n_{A}}b_{n_{B}} \end{bmatrix}$$

• Many possible matches

Background

Record Set-A Record Set-B Birth Certificates Enrollments

Possible Matches

• The truth is out there...

General Principles

Possible Matches	Set M: "True" Correct Matches	Set U: "True" Incorrect Matches
Matrix of Possible Matches from previous slide, described below.	a ₁ b ₃ a ₂ b _{n B} a ₃ b ₁ : a _{nA} b ₂	$a_1b_1, \\ a_1b_2,, \\ a_1b_1, a_2b_2, a_2b_3, \\ a_3b_2, a_3b_3, \\a_{nA}b_{nB},$

Estimating M and U

False Matches

False Non-Matches

Optimization Problem

• For a given level of false matches and non-matches, how do you obtain the smallest number of uncertain matches?

Optimization Problem

- For a given level of false matches and nonmatches, how do you obtain the smallest number of uncertain matches?
- In practice...
 - Minimize the false matches
 - Minimize the false nonmatches
 - Minimize the uncertain matches
- May not be possible to do all at the same time

Correct Solution...

Record Set-A Record Set-B Birth Certificates Enrollments

Possible Matches

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n_{A}} \end{bmatrix} \times \begin{bmatrix} b_{1} & b_{2} & b_{3} & \cdots & b_{n_{B}} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & (a_{1}b_{3}) & \cdots & a_{1}b_{n_{B}} \\ a_{2}b_{1} & a_{2}b_{2} & a_{2}b_{3} & \cdots & (a_{2}b_{n_{B}}) \\ a_{3}b_{1} & a_{3}b_{2} & a_{3}b_{3} & \cdots & a_{3}b_{n_{B}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n_{A}}b_{1} & (a_{n_{A}}b_{2}) & a_{n_{A}}b_{3} & \cdots & a_{n_{A}}b_{n_{B}} \end{bmatrix}$$

• But life is rarely perfect...

Solution Challenges

Record Set-A Record Set-B Birth Certificates Enrollments

Possible Matches

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n_{A}} \end{bmatrix} \times \begin{bmatrix} b_{1} & b_{2} & b_{3} & \cdots & b_{n_{B}} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & a_{1}b_{3} & \cdots & a_{1}b_{n_{B}} \\ a_{2}b_{1} & a_{2}b_{2} & a_{2}b_{3} & \cdots & a_{2}b_{n_{B}} \\ a_{3}b_{1} & a_{3}b_{2} & a_{3}b_{3} & \cdots & a_{3}b_{n_{B}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n_{A}}b_{1} & a_{n_{A}}b_{2} & a_{n_{A}}b_{3} & \cdots & a_{n_{A}}b_{n_{B}} \end{bmatrix}$$

• One mistake and the dominoes begin to fall...

Solution Challenges

Record Set-A Record Set-B Birth Certificates Enrollments

Possible Matches

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n_{A}} \end{bmatrix} \times \begin{bmatrix} b_{1} & b_{2} & b_{3} & \cdots & b_{n_{B}} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & a_{1}b_{3} & \cdots & a_{1}b_{n_{B}} \\ a_{2}b_{1} & a_{2}b_{2} & a_{2}b_{3} & \cdots & a_{2}b_{n_{B}} \\ a_{3}b_{1} & a_{3}b_{2} & a_{3}b_{3} & \cdots & a_{3}b_{n_{B}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n_{A}}b_{1} & a_{n_{A}}b_{2} & a_{n_{A}}b_{3} & \cdots & a_{n_{A}}b_{n_{B}} \end{bmatrix}$$

Solution Challenges

Record Set-A Record Set-B Birth Certificates Enrollments

Possible Matches

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n_{A}} \end{bmatrix} \times \begin{bmatrix} b_{1} & b_{2} & b_{3} & \cdots & b_{n_{B}} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & a_{1}b_{3} & \cdots & a_{1}b_{n_{B}} \\ a_{2}b_{1} & a_{2}b_{2} & a_{2}b_{3} & \cdots & a_{2}b_{n_{B}} \\ a_{3}b_{1} & a_{3}b_{2} & a_{3}b_{3} & \cdots & a_{3}b_{n_{B}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n_{A}}b_{1} & a_{n_{A}}b_{2} & a_{n_{A}}b_{3} & \cdots & a_{n_{A}}b_{n_{B}} \end{bmatrix}$$

Estimating M and U

Predicted Matches a ₁ b ₃ , a ₂ b _{nB} , a ₃ b ₃ ,	\rightarrow	Set M: "True" Correct Matches a_1b_3 $a_2b_{n B}$ a_3b_1 \vdots a_nAb_2
Predicted Non-Matches $a_1b_1, a_1b_2, a_2b_1,$ $a_3b_1, a_2b_3, a_3b_2, \dots$	\rightarrow	Set U: "True" Incorrect Matches $a_1b_1,$ $a_1b_2,,$ $a_1b_1, a_2b_2, a_2b_3,$ $a_3b_2, a_3b_3,$ $a_{nA}b_{nB},$
Uncertain Matches a ₂ b ₂ , a _{nA} b ₂ ,	\rightarrow	?

• Start by throwing the majority of possible matches into predicted non-matches through blocking 35

Blocking Techniques

- Typically begin by essentially eliminating the vast majority of possible matches
 - Automatically code as non-matches
- All-to-All Comparison
 - Every record in A compared to every record in B
 - Generally only practical in smaller databases
Blocking

- Possible matches must agree on a subset of specified fields
- Possible matches not agreeing on those fields automatically classified as non-matches
- Can dramatically reduce the number of possible comparisons to make
- Generally some form of blocking is necessary for computational efficiency

Blocking

- Selection of fields used for blocking is key
- The poorer the quality of the fields used in blocking, the more erratic the results
 - If data in blocking fields are random, results are meaningless
 - If data in blocking fields are "perfect", results will still contain all correct matches
 - Quantify the upfront minimum/base error rate as the product of the corresponding *m* probabilities (more later..)

Moving Window Blocking

- Records are sorted based on some combination of one or more fields
- Records in A are compared to similar records in B that fall within a specified window size
 - Sort by date of birth
 - Select window size of 30
 - If a baby in A was born on August 18, 2007 only consider the 30 records in B around that value

Moving Window Blocking

- Selection of fields for sorting is again key
 - Sorting on different fields may increase the separation of "correct" matches
 - Typos may dramatically impact windows
- Multiple iterations with different sort orders may be valuable
- Powerful tool when one wants to block on quantitative field with expected small errors (dates, birth weight...)

Comparison of Blocking Approaches

- If great confidence in a given field, traditional blocking may make the most sense
- If one wishes to use a quantitative variable (birthweight, date of birth) for blocking, moving window comparison probably makes the most sense
- Note that this is different than a distance measure for an individual field (e.g., a birth within 100g is considered a match)

Non-Deterministic Methods

Weighted matches Probabilistic methods Machine learning

Hold on Tight for a Minute...

•Winnie the Pooh Video

Non-Deterministic Methods

- Two records do not have to agree across all fields in order to be matched
 - Weights are used to quantify the likelihood that a pair of records are a true match
- A record in one file is compared to multiple records in another file
 - Using the weights, scores are calculated for possible matches that suggest whether it is correct (i.e., are the same person)

Cutoff Scores

- Cutoff scores
 - Above some value (e.g. "14") conclude it *is* a true match
 - Below some value ("11"), conclude it *is not* a true match
 - Any possible match with a score between these two values is a manually reviewed
- Individual choice in cutting off low weights

Weighted Fields

- Match two data files based on SSN, First Name, Last Name, Date of Birth, ...
- Agreement in some fields are given more "weight" than agreement in other fields
 - A match on SSN has a weight of 3
 - A match on First Name has a weight of 1
 - A match on Last Name has a weight of 2
- The weight is *non-specific* (i.e., does not change based on the values in the field)

Weighted Fields

- Sum the weights for each possible match
 - Agreement in different fields results in different sums
 - Larger sums reflect greater confidence of a match
 - Distribution evaluated and cutoff scores determined
 - Each possible match is compared to these cutoff scores to conclude whether a match, non-match, or review

Weighted Fields

- Determining values for the weights
 - Different fields may be a stronger indicator of a true match (ID number versus name)
 - Can assign "penalty" weights for non-matches
 - High quality field that *should* almost always agree
 - Subjective, EM algorithm, machine learning
- With *non-specific weights*, the same weight applies for regardless of the actual data values being matched
 - "Jones-Jones" gets the same weight as "Szapocznik-Szapocznik"

Birth Certificate				Enrollment Data			
ID	First	Mid	Last	ID	First	Mid	Last
9	Zbignew		Brezinsk <i>y</i>	534	Zbignew	J	Brezinsk <i>i</i>

- In contrast, probabilistic matching takes into consideration the specific values in the fields being matched
 - Considers the quality of the data in the field
 - Open to further analysis of matching strength

Birth Certificates				Birth Defects Registry			
ID	First	Mid	Last	ID	First	Mid	Last
9	Zbignew		Brezinsk y	534	Zbignew	J	Brezinsk <i>i</i>

- More complicated (and expensive) strategy
- Still need to estimate some weights (m and u probs)

- Two records are compared on each of the specified fields.
- A weight—w_i—is calculated for each field in a potential match reflecting the strength of the agreement or disagreement

Factors Influencing Likelihood of Match

- Reliability of data fields
 - Good quality data counts more than poor quality
 - High quality data suggests that fields should agree if a correct match
 - Low quality data suggests that even if fields don't agree, it may still be a correct match
 - If a field is pure noise, correct matches will be random across the databases
 - Reflects the likelihood that fields would agree if
 it *is* a correct link

Factors Influencing Likelihood of Match

- Frequency of field values
 - The more common the value in a field, the greater the odds that records will be erroneously matched
 - A match based on the Zbignew is a good indicator of a match, even if there may be disagreement in other fields
 - A match based on the John is of less value, requiring matches on more fields to conclude its the same person
 - Rare values count more than common values
 - Reflects the likelihood that fields would agree if *not* a correct link

Factors Influencing Likelihood of Match

- Number of Matches
 - The greater the number of individuals in one database that also appear in the other database, the greater probability of linkage across databases.
 - If two databases are the same size, and every record in one has a match in the other, it is easier to infer that two records are the same individual
 - If two databases have *no* individuals in common, the probability of a linkage across the databases is nil, regardless of how well two records agree

Calculating Match Weights

Birth Certificate				Enrollment Data			
ID	First	Mid	Last	ID	First	Mid	Last
9	Zbignew		Brezinsk y	¦534	Zbignew	J	Brezinsk <i>i</i>

- Weight Calculation
 - M-probability
 - Probability that a field agrees if the pair is a correct match
 - U-probability
 - Prob that a field agrees if the pair is an incorrect match
 - Chance that a given field will agree randomly
 - \approx the proportion of records with a specific value

• If the field agrees, w_i is equal to

 $w_i = \log_2\left(m_i/u_i\right)$

- $-m_i$ for first name = .98, or 98% of the time, if it's a correct match, the first names will agree
- u_i for Zbignew is .00001 is the probability of randomly getting two first names that are Zbignew

 $w_{il} = \log_2(m_i/u_i) = \log_2(.98/.00001) = 16.58049$

• In cases where two records disagree on a specified field, w_i is equal to

$$w_i = \log_2 (1 - m_i / 1 - u_i)$$

- $-m_i$ for last name = .96, or 96% of the time, if it's a correct match, the last names will agree
- u_i for Brezinsky is .00003 is the probability of randomly getting two last names that are Brezinsky

 $w_{i2} = \log_2\left((1 - m_i)/(1 - u_i)\right) = \log_2\left((1 - .96)/(1 - .00003)\right) = -4.64381$

Calculating Match Weights

- A composite weight, w_t calculated for each pair of records
 - The sum of weights across all fields used in linkage

$$w_t = \sum_{i=1}^k w_i$$
$$w_{it} = 16.58049 - 4.64381 = 11.93668$$

- Larger w_t suggest a correct match,
- Smaller or negative w_t suggest an incorrect match.

- Two fields disagree
 - m-probabilities generally come into play
 - How big of a hit do you take when last name doesn't agree across a possible match?
- Two fields agree
 - Differences in the u-probabilities that typically matter most
 - (e.g., last name of Smith versus Brezinski).

Probabilistic Match Weights

- Cutoff values for w_t are determined and used to classify possible matches
 - Automatic matches
 - Manual review
 - Automatic rejection
- Traditionally, techniques end at this point

Probabilistic Match Weights

- Issues
 - w_t values have no inherent meaning
 - No set range as to large or small $w_t s$

 If multiple iterations are performed, cutoffs must be analyzed and determined for every iteration

Estimating Probabilities

• The total-weight required for two records to have a probability, *p*, of being a match is equal to...

$$w_t = \log_2(p/(1-p)) - \log_2(E/(N_1N_2 - E))$$

...and...

$\log_2 (E/(N_1N_2 - E))$ is the base 2 log of the odds of a random match

Estimating Probabilities

From this formula, it is possible to derive an equation for estimating *p*, the probability that any two records are a match, where...

$$p = \frac{\prod_{i=0}^{K} x_i}{\prod_{i=0}^{K} x_i + 1}$$
 $x_0 = E/(N_1N_2 - E)$ odds of a random match,
 $x_0 = \frac{K}{N_1N_2 - E}$ $x_i = \frac{1}{N_1N_2 - E}$ $x_{i,i>0} = \frac{1}{M_1N_2 - E}$ $x_{i,i>0} = \frac{1}{M_1N_2 - E}$ $x_{i,i>0} = \frac{1}{M_1N_2 - E}$

 $x_{i,i>0} = (1 - m_i)/(1 - u_i)$ if two fields do not agree

Sum of Weights (w_t) vs Probabilities

- Sum of Weights (w_t)
 - Requires repeatedly calculating log₂'s
 - No inherent interpretability, must subjectively determine a "large" w_t with each linkage
- Probabilities
 - Does not requires log₂'s, and so improved speed with large linkage projects
 - More readily understood and interpreted criteria for determining whether to classify two records as being a match

Machine Learning

- Through a series of software-driven iterations, software "learns" which weights to use or which combinations of linkage fields are best
- May use any of these approaches
 - Most likely use weighted fields or probabilistic

Machine Learning

- Typically, use training datasets
 - Software fed *training data* with known solution regarding "true" matches
 - Algorithms match records based on initial sets of weights
 - Results compared to information regarding "true" matches to see if replicated
 - Modifies weights and re-runs with same or different training data

Machine Learning

- After various trials with training data, final set of weights determined
 - May see minimal modifications made to new trials
- Algorithm should now work with real data
- Issues
 - Identifying a training data set that reflects the nature, qualities, and issues in the data sets you wish to link
 - Complexity
 - Some approaches seek to skip need for training sets

Probabilistic Linkage Methods

- Some SAS programmers write their own code for probabilistic matching
- Software packages
 - Can be very expensive
 - Difficult to use
 - Some applications are available as freeware or shareware
Choosing Probabilistic Software

Program	OS	Initial \$	Yearly \$	Link Type	Desc	Audience	Organization
Automatch	Windows	\$100,000	???	Probabilistic	GUI	Marketing	
(Integrity)							
Generalized	UNIX	\$18,800	10%	Probabilistic	ORACLE	Health care	Stats Canada
Record Linkage							
System (GRLS)							
LinkPro	Windows/	\$1,455 /	None	Determ &	SAS	Health care	U. of Manitoba
	Server	\$1,190		Prob			

- Links: same as LinkPro but freeware
- FRIL: also freeware, open source

Overall Summary of Linkage Methods

- Many tools and strategies available
- No single approach is perfect for every situation
- Factors to consider
 - Purpose of linkage
 - Nature of the data
 - Quality of fields used for linkage
 - Type of data (string, date, numeric) used for linkage
 - Resources available